

# **REVERSE FINCELL HF**

Gli elementi filtranti Reverse Fincell HF sono progettati per essere impiegati nel trattamento per la purificazione di grandi volumi di gas.

- Alta efficienza di separazione
- Elevate capacità di portata
- Basse perdite di carico, risparmio energetico
- Barriera antitrascinamento
- Protezione esterna di sicurezza in acciaio INOX



Gli elementi filtranti **REVERSE FINCELL HF** vengono impiegati nelle applicazioni in cui è necessario ottenere un elevato grado di efficienza sia nella rimozione di fasi liquide sotto forma di nebbie ed aerosol che nella rimozione di particelle solide presenti nei fluidi gassosi. Le applicazioni tipiche prevedono l'installazione a protezione di costosi letti catalitici,booster di ricompressione e turbine ed in tutti i processi produttivi in cui è necessario disporre di gas pulito.

Il principio di funzionamento si basa sull'azione coalescente dei materiali filtranti utilizzati; il gas contaminato attraversa l'elemento filtrante dall'interno verso l'esterno; le particelle solide del gas sono trattenute all'interno dell'elemento filtrante mentre le micro particelle liquide vengono agglomerate dal filter media ed ingrossate dalla barriera antitrascinamento che per gravità cadono nella zona di calma del contenitore.

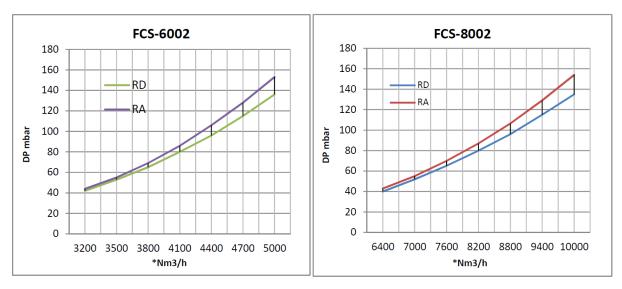
La particolare struttura filtrante pieghettata permette di ottenere una elevata superficie filtrante con conseguente bassa perdita di carico e lunga vita operativa.

Le performance delle Reverse Fincell HF sono validate in accordo alle norme ISO 12500-1 e ISO 12500-3.

| Descrizione                                   | RD                     |            | RA                    |             |  |
|-----------------------------------------------|------------------------|------------|-----------------------|-------------|--|
| Grado di filtrazione                          | 3 micron               | 0,1 micron | 0,5 micron            | 0,01 micron |  |
| Efficienza rimozione solidi                   | @ 99,9999 %            | @ 99,9%    | @ 99,9999 %           | @ 99,999 %  |  |
| Efficienza di rimozione aerosol da 0,3 micron | @ 99,                  | 99 %       | @ 99,9995 %           |             |  |
| Massima temperatura di progetto               | 120 °C                 |            |                       |             |  |
| Olio residuo a 20°C                           | 0,1 mg/m3              |            | 0,01 mg/m3            |             |  |
|                                               | ( ingresso <30 mg/m3 ) |            | ( ingresso <3 mg/m3 ) |             |  |
| Perdita di carico (nuovo)                     | 60 mbar                |            | 90 mbar               |             |  |
| Perdita di carico (saturo)                    | 140 mbar               |            | 200 mbar              |             |  |
| Perdita di carico sostituzione filtro         | 0,7 - 1,2 bar          |            |                       |             |  |
| Max. resistenza meccanica                     | 3 bar                  |            |                       |             |  |
| Direzione del flusso                          | Interno / Esterno      |            |                       |             |  |
| Configurazione filter media                   | Pieghettata            |            |                       |             |  |

#### Gradi di filtrazione e caratteristiche

#### Materiali


|                         | Versioni disponibili                   |                    |  |  |
|-------------------------|----------------------------------------|--------------------|--|--|
| Descrizione materiali   | FCS                                    | FCC (1)            |  |  |
| Terminali               |                                        |                    |  |  |
| Supporto interno        | Acc.Inox AISI 304                      | Acc.Inox AISI 316L |  |  |
| Supporto esterno        |                                        |                    |  |  |
| Matrice filtrante grado | Microfibra di borosilicato e Cellulosa |                    |  |  |
| Guarnizione standard    | V=Viton                                |                    |  |  |
| Guarnizioni a richiesta | B=Buna N ; T=Teflon ; S=Silicone       |                    |  |  |

(1) disponibile solo per quantità

### Tabella di selezione

| Modello     | Area filtrante  | Portata            |      | Dimensioni nominali mm |                     |           |                             |
|-------------|-----------------|--------------------|------|------------------------|---------------------|-----------|-----------------------------|
|             | cm <sup>2</sup> | Nm <sup>3</sup> /h | SCFM | Diametro<br>esterno    | Diametro<br>interno | Lunghezza | Diametro foro<br>centraggio |
| FCS-6002-** | 24.300          | 4100               | 2413 | 170                    | 110                 | 915       | non previsto                |
| FCS-8002-** | 33.300          | 8200               | 4825 | 210                    | 155                 | 915       | 16                          |

\*\* indicare il grado di filtrazione richiesto



\* Le portate indicate sono riferite ad aria compressa a 7 barg e 20 C°

DS-FCS-687-IT-20

## Bea Technologies Spa

Via Newton,4 -20016 Pero (MILANO) Italy Tel.+(39) 02 339271 / Fax+(39) 02 3390713 mail:info@bea-italy.com web:www.bea-italy.com

I dati riportati sono informativi e soggetti a modifiche senza preavviso. E' responsabilità dell'utilizzatore determinare l'idoneità del prodotto richiesto per un uso specifico e l'adattabilità dello stesso alle proprie procedure d'impiego.